

Auriscalpium greyorum sp. nov. (*Fungi: Russulales: Auriscalpiaceae*): an endangered earpick fungus from southern Australia

B. Clauss^{1,2}, L.J. Vaughan¹, G.D. Holmes¹, R. Richter³ & T.W. May^{1*}

¹ Royal Botanic Gardens Victoria, Birdwood Avenue, Melbourne, Victoria 3004, Australia

² Independent researcher, Denver, Colorado 80220, U.S.A.

³ Citizen scientist, Monbulk, Victoria 3793, Australia

*Corresponding author: tom.may@rbg.vic.gov.au

Luke J. Vaughan <https://orcid.org/0000-0003-1659-9938>; Gareth D. Holmes <https://orcid.org/0000-0003-1120-8731>; Tom W. May <https://orcid.org/0000-0003-2214-4972>

© Copyright of this paper is retained by its authors, who, unless otherwise indicated, license its content under a CC BY 4.0 license

Abstract

Auriscalpium greyorum is described for the fungus previously known as *Auriscalpium* sp. "Blackwood", an endangered species known from few sites in *Eucalyptus* forests in Victoria, Australia. Microscopically, *A. greyorum* is consistent with other species of the genus by the presence of amyloid, ornamented spores and gloeoplerous hyphae and cystidia — but the very reduced stipe, at most 7 mm long, embedded in the bark of the substrate, differs from the well-developed stipe present in most other species of the genus. Phylogenetic analysis of internal transcribed spacer (ITS) rDNA demonstrated that *A. greyorum* is well-separated from the seven other named species of *Auriscalpium* for which sequence data are available, including from *A. andinum*, a South American species with a very short stipe. Within the clade of *Auriscalpium* species, sequences of collections from the southern hemisphere, including *A. greyorum*, form a grade, with sequences from *Gliodon*, *Dentipratulum* and *A. villipes* (from Mexico) interspersed between this southern hemisphere grade and the clade of the remaining northern hemisphere species of *Auriscalpium*. Therefore, further exploration of the generic limits of these three genera is warranted. *Auriscalpium greyorum* is threatened by inappropriate fire regimes, habitat disturbance and climate change.

Cite this paper as: Clauss B, Vaughan LJ, Holmes GD, Richter R & May TW (2026). *Auriscalpium greyorum* sp. nov. (*Fungi: Russulales: Auriscalpiaceae*): an endangered earpick fungus from southern Australia. *Australian Journal of Taxonomy* 112: 1–10. doi: <https://doi.org/10.54102/ajt.u79j7>

Introduction

Auriscalpium Gray is a long-established genus, the type of which, *Auriscalpium vulgare* Gray, was originally

described by Linnaeus as *Hydnum auriscalpium* L. (Linnaeus 1753). The word *Auriscalpium* derives from Latin *auris* (ear) and *scalpo* (to scratch) and *A. vulgare* is commonly called the ear-pick fungus, due to the resem-

This paper was submitted on 11 November 2025 and published on 21 January 2026 (2026-01-20T20:35:54.787Z). It was reviewed by two anonymous reviewers and edited by Kevin Thiele. Tom May is an Editor of the Australian Journal of Taxonomy. He did not at any stage have access to the manuscript while in peer review, and had no influence on its acceptance or handling, as is standard practice for manuscripts submitted by editors. Australian Journal of Taxonomy. ISSN: 2653-4649 (Online).

blance of the small and laterally attached pileus on a long stipe to an ear-pick. Ryvarden (2001) accepted eight species in *Auriscalpium*, to which have been added *A. microsporum* P.M.Wang & Zhu L.Yang and *A. orientale* P.M.Wang & Zhu L.Yang (Wang & Yang, 2019). Macroscopically, species of *Auriscalpium* are pileate, stipitate and with a spinose hymenophore; microscopically, the genus is characterised by amyloid spores that are ornamented, either a monomitic or dimitic hyphal system and the presence of gloeoplerous hyphae and cystidia (Maas Geesteranus 1966, 1971, 1978; Maas Geesteranus & Rammeloo 1979; Stalpers 1996; Ryvarden 2001; Wang & Yang 2019).

Maas Geesteranus (1963) introduced the family *Auriscalpiaceae* for *Auriscalpium*, *Gloiodon* P.Karst. and *Lentinellus* P.Karst. These three genera display quite different hymenophores (spines in the first two but lamellae in *Lentinellus*), but were united by the presence of gloeocystidia and production of minutely echinulate, amyloid spores. Phylogenetic analyses of sequence data consistently recovers the family *Auriscalpiaceae* as including *Auriscalpium*, *Gloiodon* and *Lentinellus*, but also including *Artomyces* Jülich (coral-like, with multiple branches and smooth hymenium) and *Dentipratulum* Domański (with a spinose hymenophore) (Larsson & Larsson 2003; Miller et al. 2006; Chen et al. 2015).

A rare spinose fungus with a rudimentary stipe, known from few locations in Victoria, has been designated as *Auriscalpium* sp. "Blackwood" and assessed as Endangered on the IUCN Red List of Threatened Species (May 2019). We here formally describe this fungus on the basis of morphological and phylogenetic analyses.

Methods

Presentation of names

Names of taxa at all ranks are italicised following Thines et al. (2020).

Morphological examination.

Macromorphological characters were described from fresh collections, field notes and photographs made at the time of collection. Colours were described from fresh collections in daylight conditions, and where possible according to Kornerup & Wanscher (1978). Macroscopic features were observed and photographed using an Olympus SZX16 stereomicroscope with an Olympus DP73 camera attachment and measured using measurement tools on Olympus cellSens Standard (v. 1.16, Olympus Corporation, Tokyo, Japan). Habitat, host tree, associated species, and appearance season information are based on field notes. Additional seasonal appearance information is based on iNaturalist observation records.

Micromorphological characters were described from examination of dried herbarium specimens, from which hand-cut sections were rehydrated in H₂O or 5% KOH,

as specified, to observe pellis, trama and hymenium tissues. Spine sections were mounted in Melzer's reagent to observe spore size, shape, ornamentation and presence or absence of amyloid reaction. Microscopic features were observed and photographed using an Olympus BX-52 bright field microscope with differential interference contrast and an Olympus DP73 camera attachment. Measurements were taken at $\times 400$ or $\times 1000$ (with oil immersion) using measurement tools on Olympus cellSens standard.

Spore measurements are shown as a raw range followed by the range of collection means from measurements of 10 randomly selected mature spores per collection observed from spine tissue, with grand mean in italics. The number of spores measured (A), from the number of collections examined (B), is shown as (A/B). The quotient 'Q' is the ratio of spore length to spore width and is given as the range of individual values, followed by the range of collection means with the grand mean in italics. All other measurements are given as observed ranges.

DNA isolation, PCR and sequencing.

DNA was isolated from selected herbarium specimens (Table 1) using a modified CTAB method based on that of Gardes & Bruns (1993) and outlined in Craig et al. (2023). The internal transcribed spacer (ITS) region was PCR amplified using the primers ITS1 and ITS4 (White et al. 1990; Gardes & Bruns 1993). Domains D1–D2 of the large subunit (LSU) of rDNA were PCR amplified using primers LR5 and LROR (Vilgalys & Hester 1990; Vilgalys Lab 1992). Sequencing was undertaken by AGRF (Melbourne, Australia) using the same primers as used for PCR amplification. The resulting chromatograms were aligned, manually checked and edited using Geneious Prime (Version 2021.0.3, <https://www.geneious.com>) to generate consensus sequences (Table 1). LSU sequences were generated to provide reference sequences for the new species, but were not analysed further.

Phylogenetic analyses.

ITS sequences identified as *Auriscalpium* in NCBI GenBank and UNITE (Abarenkov et al. 2023) were selected and added to sequences newly generated from MEL specimens. Additional sequences from GenBank and UNITE that had a percentage identity of greater than 80% in BLAST searches to *Auriscalpium greyorum* (OQ750680) and *Auriscalpium* sp. (OQ750681) were also acquired (Altschul et al. 1990; Morguliset al. 2008). Sequences representing genera in *Auriscalpiaceae* (*Artomyces*, *Dentipratulum*, *Gloiodon* and *Lentinellus*) and the outgroup *Gloeocystidiellaceae* (*Gloeocystidiellum*) were selected based on a phylogeny of the Russulales (Miller et al. 2006) and phylogeny of *Artomyces* (Cai et al. 2025). Sequences less than 675 bp and those with missing data were removed from the alignment, unless they were

Table 1. ITS and LSU sequences newly generated for this study.

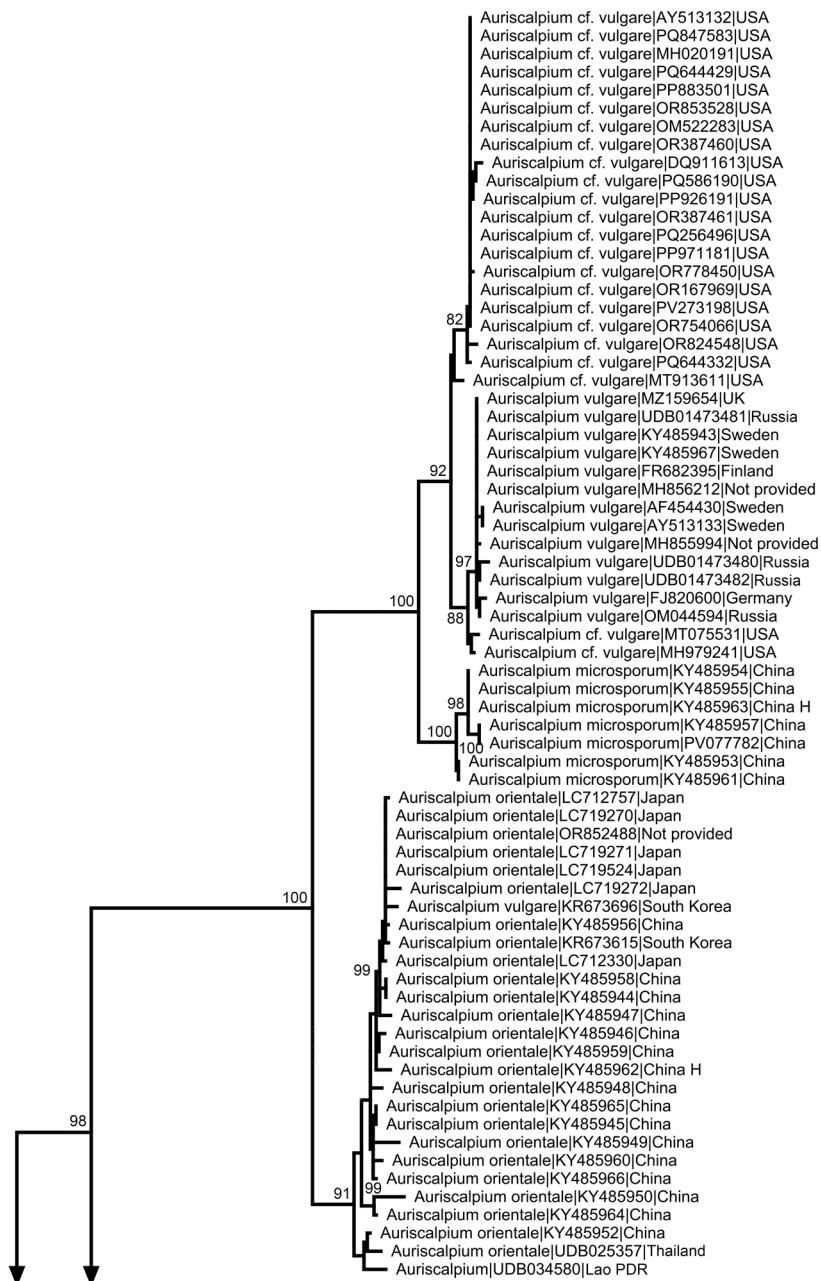
Taxon	Specimen	Locality	GenBank Accession		Type status
			ITS	LSU	
<i>Auriscalpium greyorum</i>	MEL 2305170	Australia: Victoria	QQ750676	KP311332	
<i>Auriscalpium greyorum</i>	MEL 2323326	Australia: Victoria	QQ750677	PP715652	Holotype
<i>Auriscalpium greyorum</i>	MEL 2524521	Australia: Victoria	QQ750678		
<i>Auriscalpium greyorum</i>	MEL 2524522	Australia: Victoria	QQ750679	PP715638	
<i>Auriscalpium greyorum</i>	MEL 2524894	Australia: Victoria	QQ750680	PP715644	
<i>Auriscalpium</i> sp. AUS1	MEL 2524898	Australia: Victoria	QQ750681		
<i>Auriscalpium</i> sp. AUS1	MEL 2524899	Australia: Victoria	QQ750682		
<i>Auriscalpium</i> sp. AUS1	MEL 2533852	Australia: Tasmania	PP508274		

among the only representative sequence available for taxa (e.g. *Gloiodon nigrescens*, AF506450).

The selected ITS sequences (Supplementary material 1: <https://doi.org/10.6084/m9.figshare.28856345>) were aligned using MUSCLE Alignment (Version 3.8.425) as implemented in Geneious Prime (1000 maximum iterations, 100 maximum trees, all other settings default) (Edgar 2004). The alignment was manually checked and edited and the ends were trimmed. Maximum Likelihood (ML) phylogeny was estimated with IQ-TREE 2.2.2.6 (Nguyen et al. 2015; Minh et al. 2020), using TIM+F+G4 substitution model selected by ModelFinder (Kalyaanamoorthy et al. 2017), and 10,000 Ultrafast bootstrap (UF) replicates (Hoang et al. 2018). The ITS alignment for the above analyses is deposited in figshare (Supplementary material 2: <https://doi.org/10.6084/m9.figshare.28856345>).

Results

The aligned ITS dataset contained sequences from 112 specimens representing 22 species and comprised 759 characters, of which 365 characters were constant and 310 were parsimony informative. In the ML phylogenetic tree based on ITS sequence data (Fig. 1) the *Auriscalpiaceae* clade has 100% support (cited support values are Ultrafast bootstrap). Within *Auriscalpiaceae*, sequences from representative species of the genera *Artomyces*, *Lentinellus* and an un-named clade of environmental sequences from Colombia form well-supported clades (100%). The remaining sequences form a well-supported clade (99%) that is sister to this group, and contains species of *Auriscalpium*, *Dentipratulum* and *Gloiodon*. Australian sequences within this group are placed in three of six southern hemisphere species-level clades. Of these, only *Auriscalpium barbatum* from Western Australia, *A. umbella* from New Zealand, and *Gloiodon nigrescens* from Indonesia are so far formally named.


A well-supported clade (100%) representing *Auriscalpium greyorum* sp. nov. is sister to a clade (100%) con-

taining *A. umbella* (99%) and an unnamed Australian species, AUS1 (100%). This group is sister to the remaining sequences of *Auriscalpiaceae*. *Auriscalpium barbatum* (94%) from Western Australia and an undescribed species from New Caledonia, NC1 (99%), are placed within a well-supported (100%) clade that is sister to other *Auriscalpiaceae* (except the *A. greyorum* / *A. umbella* / *A. sp.* AUS1 clade). Within these other *Auriscalpiaceae* sequences, *Dentipratulum*, *Gloiodon* and a clade of *Auriscalpium* sequences from Mexico and Ecuador each have high support (100%, 99%, 100%, respectively), and together form a clade (99%) that is sister to a well-supported clade (100%) containing northern hemisphere *Auriscalpium* species, including the type species, *A. vulgare*. Within this clade, the *Auriscalpium orientale* clade (91%) is sister to a clade (100%) containing the *A. microsporum* clade (100%) and the clade of *A. vulgare* group (92%). Within the *A. vulgare* group, there is a clade of Eurasian sequences (97%) that contains two North American specimens labelled *A. cf. vulgare* and the other North American specimens labelled *A. cf. vulgare* form a separate clade (with moderate support).

Discussion

Auriscalpium greyorum extends the range of morphological characters exhibited by *Auriscalpium* to include a much-reduced stipe embedded in substrate tissue. *Gloiodon* has been distinguished from *Auriscalpium* on the basis of the lack of a stipe, but in addition the habit is resupinate to effused-reflexed and the context is fibrous rather than compact as in *A. greyorum*. Therefore, on morphological grounds, *A. greyorum* fits best within *Auriscalpium*.

Australasian species of *Auriscalpium* have not previously been included in phylogenetic analyses of the genus. The Australasian species, including the named species *A. barbatum* and *A. greyorum* (from Australia) and *A. umbella* (from New Zealand), as well as several un-named species from Australia and New Caledonia, fall in a grade at the base of the clade containing *Auriscalpium* +

Figure 1. Maximum Likelihood phylogenetic tree based on ITS sequences of *Auriscalpiaceae* and *Gloeocystidiellaceae* from NCBI and UNITE or newly generated for this study. Support for clades is indicated by UF bootstrap percentage at nodes for values >80%. *Gloeocystidiellum porosum* was used as outgroup. Sequences in bold type were generated through this project. The clade highlighted in light red represents the newly described species. Two clades comprised of sequences from New Caledonian and Australian collections that are not formally named are shown in light grey highlight. H = holotype.

Gloiodon + *Dentipratulum*. Therefore, the option of erecting a new genus for the Australasian species (in order to retain *Gloiodon* and *Dentipratulum* as independent genera) is not phylogenetically sound, and in any case, we consider this cannot be supported by morphological synapomorphies. Indeed, the molecular phylogeny calls into question the distinction between *Auriscalpium* and *Gloiodon* as already noted by Larsson & Larsson (2003). Analysis of further DNA markers is advisable before formal synonymy of the two genera is proposed. However, in relation to the placement of the species newly described here, because *Auriscalpium* has priority over

Gloiodon, the former genus would remain the correct home for *A. greyorum* if *Auriscalpium* and *Gloiodon* were to be synonymised.

Taxonomy

Auriscalpium greyorum B.Clauss, L.J.Vaughan & T.W.May, sp. nov.

MB 848128

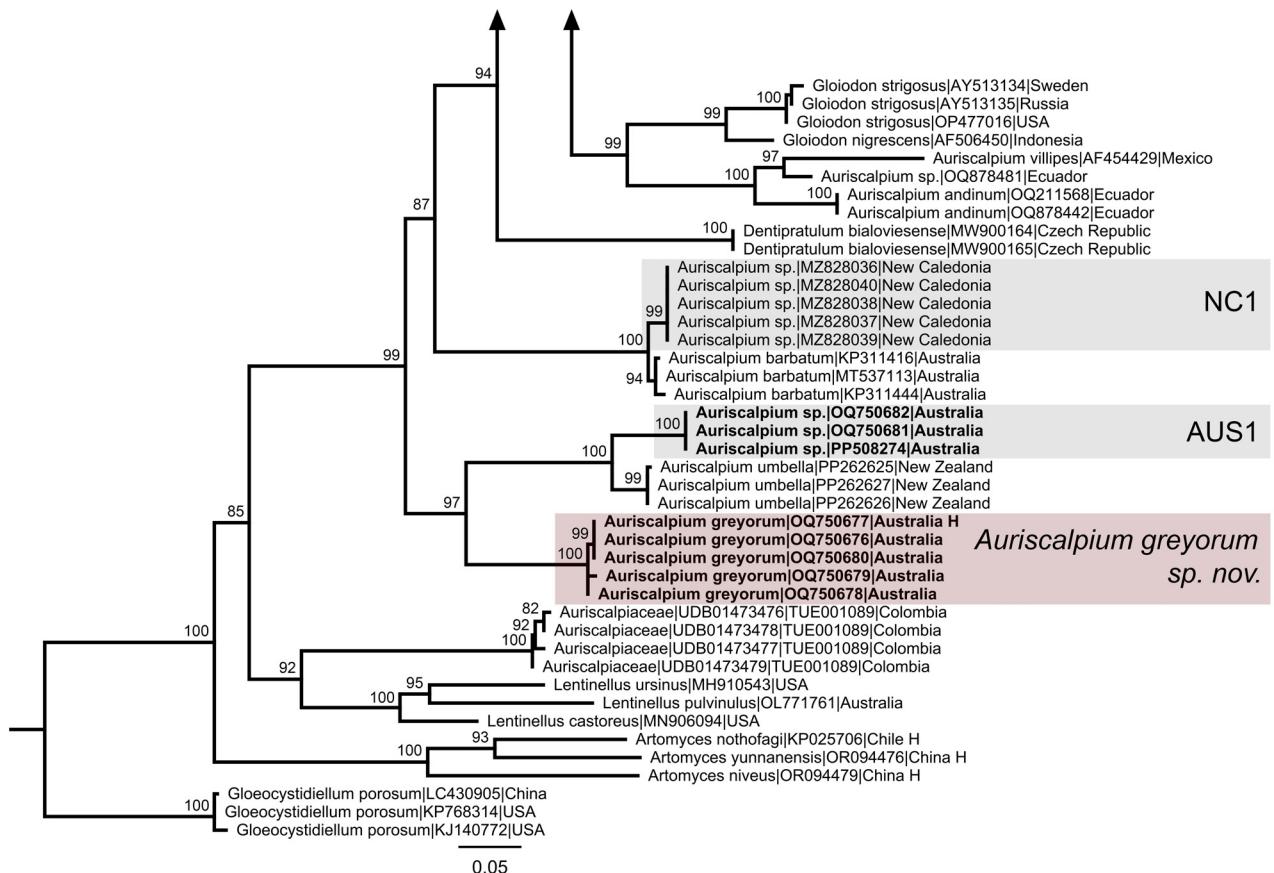


Figure 1. (Continued).

Type: AUSTRALIA, VICTORIA, Blackwood, Jack Cann Reserve, 1 July 2007, *Field Naturalists Club of Victoria Fungi Group 69* (**holotype** MEL 2323326). GenBank: ITS = OQ750677, LSU = PP715652.

Synonymy: *Auriscalpium* sp. "Blackwood" as used in May (2019).

Figs 2–3.

Basidiomes annual, pileate, laterally attached to substrate with reduced stipe. **Pileus** (3–)6–19 mm wide, 6–10(–14) mm deep horizontally from bark attachment to margin, up to 4 mm high from top of pileus to margin, semi-circular to kidney-shaped in top-view, side view hemispherical or campanulate, then plano-convex to almost plane; at first reddish brown (8D7), then chocolate brown (6F4), with darker patches of dark brown (9F8) at margin and in radial fibrils, often paler toward margin when young, often very dark brown when old; surface texture sparsely hispid, often more dense near attachment to bark and on younger specimens, bristles up to 1 mm, erect or forming appressed radial fibrils when flattened, hyaline to pale buff (4A2–3) to greyish red (8B6); margin sometimes becoming inrolled when dry, wavy, splitting radially, not translucent-striate. **Spines** pendant, up to 4 mm long, 0.2–0.5 mm diameter at base, close, terete, tapering slightly toward apex; apex rounded or acute; at first spines strongly decurrent running down stipe, with spines more well-devel-

oped on stipe than underside of pileus, then sometimes not decurrent, and with spines more well-developed close to stipe and less-developed closer to margin; almost white (1A1) to greyish white (1B1) to pale buff (1B3), sometimes with reddish tinge, with white dusting under lens, if acute, with vinaceous portion at apex. **Stipe** 1–4(–7) mm long, 1–2(–3) mm diameter, mostly embedded in bark, up to depth of 2–3 mm, sometimes narrowing in middle with slightly bulbous base; brown (6F4), with similar variations to pileus; surface with a layer of dense fine fibrils, from which arise erect, hispid processes that are up to 1 mm long, hyaline to pale buff (4A2) to greyish red (8B6); the fibrous layer with hispid processes contiguous with similar layer at base of pileus. **Context** in pileus 0.5–2 mm deep, concolourous with surface, or with very fine scattered pale buff mottling, when drying, pale buff (4A2–3), contiguous with stipe context; in stipe similar in colour to pileus context; in spine buff (4A3), to greyish red (8B6) when old.

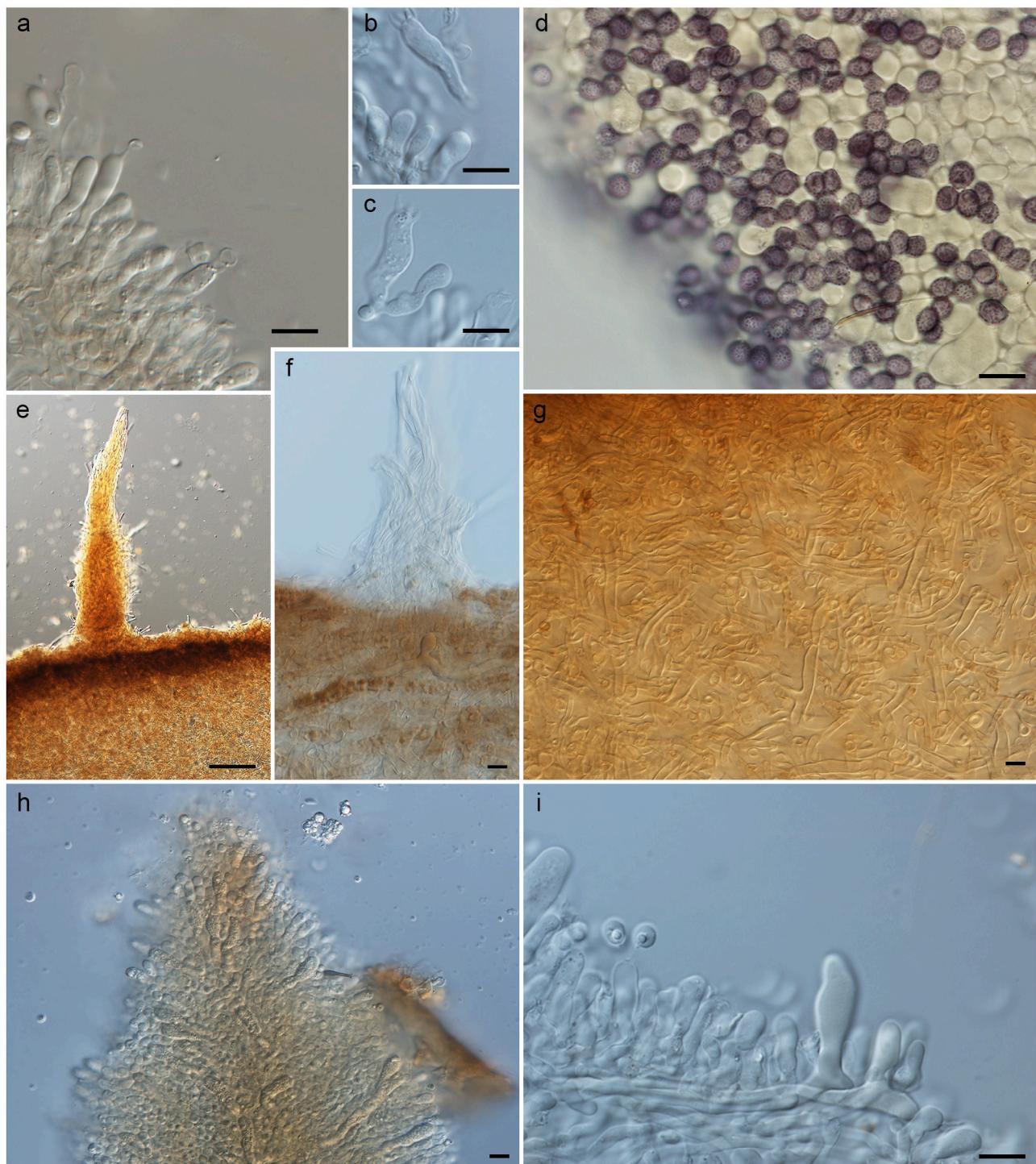

Hyphal system monomitic, with septate, thick-walled generative hyphae (2–)3–6(–10) μm wide, and aseptate, thin-walled gloeoplerous hyphae 3–7 μm wide. **Clamp connections** detected in all tissues except gloeoplerous hyphae. **Trama** in pileus and stipe consisting of interwoven generative hyphae, cylindrical or varying in diameter, sometimes inflated in sections, often slightly flexuose, branching, sometimes with right-angled branches, with occasional gloeoplerous hyphae, cylin-

Figure 2 Macroscopic features of *Auriscalpium greyorum*. **a, b** Sporing bodies in habitat, on bark of living *Eucalyptus radiata* (MEL 2524521), photographs by Reiner Richter (CC BY-NC-SA). **c** Pileus in oblique top view (MEL 2524521). **d** Cross-section of sporing body embedded in bark substrate, stipe and pileus surface with a layer of dense fine fibrils (MEL 2524521). **e** Detail of spines (MEL 2524522). **f** Cross-section of sporing body when drying, with stipe embedded in bark substrate (MEL 2524894). Scale=1 mm.

drical; in spine consisting of parallel generative hyphae, cylindrical to slightly inflated or fusiform, often with short segments, gloeoplerous hyphae cylindrical, often slightly flexuose, sometimes with right-angled bend, terminating as cystidia arising above basidia. **Subhymenium** narrow, consisting of interwoven, parallel, generative hyphae. **Pileipellis** an interwoven layer of

hyaline, thick-walled generative hyphae, cylindrical, flexuose, with rounded terminal elements, coalescing perpendicular to pileus surface in places, forming interwoven erect bristle formations up to 1300 μm ; gloeoplerous hyphae arising from context and terminating in surface layer, to half-way up bristles, as pileocystidia, widening to 7–10 μm toward apex, apex rounded

Figure 3 Microscopic features of *Auriscalpium greyorum*. **a–c, e–i** in 5% KOH; **d** in Melzer's reagent. **a–c** Basidia and basidioles (**a**: MEL 2323326, **b,c** MEL 2305170), **d** Amyloid spores with finely verrucose ornamentation, on spine (MEL 2305170), **e** Pileipellis with bristle at low magnification (**e**: MEL 2323326), **f** Pileipellis at higher magnification with interwoven, erect, hyaline bristle formation, pigment-banded subpellis and emergent gloeoplerous hyphae (**f**: MEL 2323326), **g** Pileus trama just below pileipellis (**g**: MEL 2323326), **h** Spine with pleurogloecystidia at edge, and cheilogloecystidia at apex (MEL 2524522), **i** Pleurogloecystidia emergent above hymenium, with right-angle bend and bump near bend, arising from parallel hymenophoral trama (MEL 2305170). Scale **a–d, f–i**=10 μ m; **e**=100 μ m. H = holotype.

to slightly inflated. **Subpellis** of roughly parallel thick-walled generative hyphae with bands of reddish-brown pigment. **Stipitipellis** like pileipellis with thicker interwoven hyaline surface layer, bristles up to 2000 μ m. **Stipe context** like pileus context. **Basidia**

(15–)20–30(–34) \times (4–)5–7(–8) μ m, narrowly clavate to clavate, 2–4 μ m wide at base, 4-spored; sterigmata 3–5 μ m long, 1–1.5 μ m wide at base, tapering toward tip. **Basidiospores** (4.5–)5–7 \times 4–6 μ m (60/6), means 5.45–5.75–6.18 \times 4.37–4.73–4.95 μ m, Q:

1.00–1.38(–1.46), means 1.12–1.22–1.27, globose, sub-globose or broadly ellipsoid, sometimes ellipsoid, ornamentation finely verrucose, of small, isolated, blunt, round to elongated warts, amyloid, apiculus to 1 µm. **Pleurogloeocystidia** (5–)8–10 µm wide, cylindrical to clavate, apex rounded to subcapitate, originating from parallel gloeoplerous hyphae in the spine context, often with abrupt right-angled bend, sometimes with bump near bend, or rarely branching without septa, arising parallel with basidia and terminating above hymenium, 30–60 µm long from bend to apex. **Cheilogloeocystidia** of similar size and shape, mostly without abrupt bend, also originating from parallel gloeoplerous hyphae in the spine context and extending conspicuously beyond basidia at spine apex.

Additional specimens examined: AUSTRALIA, VICTORIA: Blackwood, Jack Cann Reserve, 3 July 2005, *Field Naturalists Club of Victoria Fungi Group 11* (MEL 2524519); Blackwood, Jack Cann Reserve, 2 July 2006, *Field Naturalists Club of Victoria Fungi Group 55* (MEL 2305170); Macedon, Lagoon Park, 27 August 2022, *T.W. May* 2142 (MEL 2524894); Gembrook, Kurth Kiln Regional Park, Shortcut Track, 30 August 2022, *L.J. Vaughan* 2, *T.W. May & R. Richter* (MEL 2524521); Gembrook, Kurth Kiln Regional Park, Scout Loop Track, 30 August 2022, *L.J. Vaughan* 3, *T.W. May, R. Richter* (MEL 2524522).

Diagnostic features. *Auriscalpium greyorum* is distinctive because of the combination of the habit on the trunk of living eucalypts, the very reduced stipe (the base of which is embedded in bark) and the small sporing bodies that are eventually dark brown with a hispid to appressed fibrillose surface. *Auriscalpium greyorum* is well-separated on the basis of ITS sequences, with the closest taxa having at most 91.3% similarity (Fig. 1).

Distribution & habitat. Found in Victoria in mixed *Eucalyptus* forest with *Eucalyptus obliqua*, *E. radiata* and *E. viminalis* and understory of species of *Acacia*, *Banksia*, *Olearia*, *Pomaderris*, *Pteridium esculentum* and grasses, at altitudes 157–612 m above sea level. Occurring from single sporing bodies to large colonies on the bark of living *E. radiata*, 1–6 m above ground; long-lived, persistent on host trees from April–October.

Conservation status. This species was assessed as Endangered for the IUCN Red List of Threatened Species in 2019 based on an estimated population size of less than 250 mature individuals (May 2019). At that time it was known from only two sites, the type locality at Blackwood and at Olinda, and at each site it was present on a single tree. It has since been found at several more sites in Victoria, in Kurth Kiln Regional Park (e.g. <https://inaturalist.ala.org.au/observations/54820259>) and Bunyip State Park (<https://inaturalist.ala.org.au/observations/45047751>) and at Lagoon Park, South of Woodend (<https://inaturalist.ala.org.au/observations/131947470>). Even with these additional sites, the estimates used in the Red List assessment of between 10 and 100 sites

and between 40 and 400 mature individuals remain plausible. Threats to *A. greyorum* include inappropriate fire regimes, climate change and disturbance; with some of the sites being close to motor- and mountain bike trails.

Etymology. Named in honour of Edmund "Ed" Grey (1930–2021) and Patricia "Pat" Grey, who have made significant contributions to the knowledge of Australian fungi, including recognition of the distinctiveness and rarity of this species which was first collected in 2005 by Ed and Pat during an excursion of the Field Naturalists Club of Victoria Fungi Group.

Notes. *Auriscalpium greyorum* is highly distinctive among species of the genus *Auriscalpium* due to the inconspicuous stipe that is buried in the fibrous bark of the host tree. Most other species of *Auriscalpium* have a well-developed stipe, either central or lateral, but usually more than around 10 mm long (and often much longer), including the three species of the genus that lack sequences, *A. dissectum* Maas Geest. & Rammeloo (Congo), *A. gilbertsonii* Ryvarden (Costa Rica) and *A. fimbriatoincismum* (Teng) Maas Geest. (China) (Ryvarden 2001). The species with the shortest stipe is *A. andinum* (Ecuador), where the stipe is 5 mm long supporting a lateral pileus. This species has spores of similar size to *A. greyorum*, but the ITS sequences of the two species are quite dissimilar and *A. andinum* does not fall in the clade of Australasian species of *Auriscalpium*.

In comparison to species of *Gloiodon*, *A. greyorum* is morphologically most similar to *G. nigrescens*, which is the only species of the genus known from the southern hemisphere, but *G. nigrescens*, as documented from a collection from Bali, Indonesia by Desjardin and Ryvarden (2003), differs by the growth habit on dead hardwoods, deeply incised, digitiform margin, densely tomentose upper surface, lack of a stipe, distinctly shorter spines, and smaller spores.

In the field, as far as other hydnoid fungi occurring in Victoria, *A. greyorum* is superficially similar to *Pseudohydnium gelatinosum* (Scop.) P.Karst. in the broad sense and *Beenakia dacostae* D.A.Reid, which are both small, hydnoid fungi that may grow on or near trees in *Eucalyptus* forests. However, *A. greyorum* is easily differentiated from *P. gelatinosum* because it lacks a gelatinous texture, the pileus is smaller and dark brown, and the spines are up to 4 mm long compared to 1 mm long in *P. gelatinosum* and the Tasmanian species *P. tasmanicum* Y.C.Dai & G.M.Gates (Zhou et al. 2022). *Beenakia dacostae* is similar in size and general morphology to *A. greyorum* but typically has a more conspicuous stipe, a decurrent spine layer and a pale pileus, and is found growing on trunks of *Dicksonia antarctica* or on the soil under logs rather than on standing *Eucalyptus*. Microscopically, the amyloid spores clearly separate *A. greyorum* from both *P. gelatinosum* and *B. dacostae* (Reid 1955; Zhou et al. 2022).

Disclosures

No conflicts of interest to declare. This research was supported by the Cybec Foundation and a personal donation from the late Wendy Dodd (Canberra).

Acknowledgments

A generous donation from the late Wendy Dodd (Canberra, 1946–2023) funded the establishment of Luke Vaughan’s position at RBGV. We thank the Cybec Foundation for establishing the Jim Willis Studentship in honour of the late Dr James Hamlyn Willis, which supported Brian Clauss from December 2016 to January 2017; field observers and collectors, including the Field Naturalists Club of Victoria Fungi Group, Doreen and Scott Kecorius, and Ed and Pat Grey; and Royal Botanic Gardens Victoria curatorial staff Catherine Gallagher and Eugenia Pacitti.

Author contributions: BC and LV contributed equally to preparation of the manuscript. LV, RR and TM collected specimens. BC and LV conducted microscopy and LV carried out photo-microscopy and prepared plates and tables. LV sampled specimens for DNA. GH performed DNA isolations, PCR and chromatogram processing. LV assembled sequence alignments and produced the phylogeny. BC, GH and LV wrote methods; BC and LV prepared the species description; BC, LV and TM wrote introduction, results and discussion; and TM edited the final manuscript. All authors read and approved the final manuscript.

References

Abarenkov K, Nilsson H, Larsson K-H, Taylor AFS, May TW, Frøslev T, Pawłowska J, et al. (2023) The UNITE database for molecular identification and taxonomic communication of fungi and other eukaryotes: sequences, taxa, and classifications reconsidered. *Nucleic Acids Research* 52: D791–D797. <<https://doi.org/10.1093/nar/gkad1039>>

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. *Journal of Molecular Biology* 215: 403–410. <[https://doi.org/10.1016/S0022-2836\(05\)80360-2](https://doi.org/10.1016/S0022-2836(05)80360-2)>

Cai Q, He S, Li GM, Fan XP, Li YC, Yang ZL (2025) The genus *Artomyces* (Auriscalpiaceae, Basidiomycota) from the Gaoligong Mountains and adjacent areas, southwestern China. *Mycologia* 117(3): 516–531. <<https://doi.org/10.1080/00275514.2025.2476936>>

Chen JJ, Cui BK, Dai YC (2015) Global diversity and molecular systematics of *Wrightoporia* s.l. (Russulales, Basidiomycota). *Persoonia* 37: 21–36. <<https://doi.org/10.3767/003158516X689666>>

Craig S, Vaughan LJ, Holmes GD, May TW (2023) *Pseudobaeospora taluna* (Fungi: Agaricales) newly described from southern Australia. *Australian Journal of Taxonomy* 24: 1–16. <<https://doi.org/10.54102/ajt.yuij6>>

Desjardin DE, Ryvarden L (2003) The genus *Gloiodon*. *Sydotia* 55(2): 153–161.

Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. *Nucleic Acids Research* 32(5): 1792–1797. <<https://doi.org/10.1093/nar/gkh340>>

Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes - application to the identification of mycorrhizae and rusts. *Molecular Ecology* 2: 113–118. <<https://doi.org/10.1111/j.1365-294X.1993.tb00005.x>>

Hoang DT, Chernomor O, von Haeseler A, Minh BQ, and Vinh LS (2018) UFBoot2: Improving the ultrafast bootstrap approximation. *Molecular Biology and Evolution* 35: 518–522. <<https://doi.org/10.1093/molbev/msx281>>

Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. *Nature Methods* 14: 587–589. <<https://doi.org/10.1038/nmeth.4285>>

Kornerup A, Wanscher JH (1978) *Methuen Handbook of Colour*. 3rd edn. E. Methuen: London.

Larsson E, Larsson KH (2003) Phylogenetic relationships of russuloid basidiomycetes with emphasis on aphylophoralean taxa. *Mycologia* 95(6): 1037–1065. <<https://doi.org/10.1080/15572536.2004.11833020>>

Linnaeus C (1753) *Species Plantarum*, vol. 2. Impensis Laurentii Salvii: Holmiae.

Maas Geesteranus RA (1963) Hyphal structures in hydnoms. II. *Proceedings van de Koninklijke Nederlandse Akademie van Wetenschappen*, Section C, 66: 426–436.

Maas Geesteranus RA (1966) Notes on hydnoms, III. *Proceedings van de Koninklijke Nederlandse Akademie van Wetenschappen*, Section C, 69: 24–36.

Maas Geesteranus RA (1971) Hydnaceous fungi of the eastern old world. *Verhandelingen Koninklijke Nederlandse Akademie van Wetenschappen Afdeling Natuurkunde* 60(3): 1–176.

Maas Geesteranus RA (1978) Notes on hydnoms. XI. *Persoonia* 9(4): 491–500.

Maas Geesteranus RA, Rammeloo J (1979) Two hydnoid fungi from Zaire. *Proceedings van de Koninklijke Nederlandse Akademie van Wetenschappen*, Section C, 82(2): 211–215.

May T (2019) *Auriscalpium* sp. nov. 'Blackwood'. The IUCN Red List of Threatened Species 2019: e.T154932417A154932424. <<https://dx.doi.org/10.2305/IUCN.UK.2019-3.RLTS.T154932417A154932424.en>>

Miller SL, Larsson E, Larsson KH, Verbeken A, Nuytinck J (2006) Perspectives in the new Russulales. *Mycologia* 98(6): 960–970. <<https://doi.org/10.1080/15572536.2006.11832625>>

Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, Lanfear R (2020) IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. *Molecular Biology and Evolution* 37(5): 1530–1534. <<https://doi.org/10.1093/molbev/msaa015>>

Morgulis A, Coulouris G, Raytselis Y, Madden TL, Agarwala R, Schäffer AA (2008) Database indexing for production MegaBLAST searches. *Bioinformatics* 24(16): 1757–1764. <<https://doi.org/10.1093/bioinformatics/btn322>>

Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. *Molecular Biology and Evolution* 32(1): 268–274. <<https://doi.org/10.1093/molbev/msu300>>

Reid DA (1955) New or interesting records of Australasian Basidiomycetes. *Kew Bulletin* 10(4): 631–648. <<https://doi.org/10.2307/4113780>>

Ryvarden L (2001) The genus *Auriscalpium*. *Harvard Papers in Botany* 6: 193–198.

Stalpers JA (1996) The aphyllophoraceous fungi - II keys to the species of *Hericiales*. *Studies in Mycology* 40: 1–185.

Thines M, Aoki T, Crous PW, Hyde KD, Lücking R, Malosso E, May TW, et al. (2020) Setting scientific names at all taxonomic ranks in italics facilitates their quick recognition in scientific papers. *IMA Fungus* 11, 25: 1–5. <<https://doi.org/10.1186/s43008-020-00048-6>>

Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several *Cryptococcus* species. *Journal of Bacteriology* 172(8): 4238–4246. <<https://doi.org/10.1128/jb.172.8.4238-4246.1990>>

Vilgalys Lab (1992-) Conserved primer sequences for PCR amplification of fungal rDNA. Duke University, updated 3 Feb 1992, 1–5. <<https://sites.duke.edu/vilgalyslab/files/2017/08/rDNA-primers-for-fungi.pdf>>

Wang PM, Yang ZL (2019) Two new taxa of the *Auriscalpium vulgare* species complex with substrate preferences. *Mycological Progress* 18: 641–652. <<https://doi.org/10.1007/s11557-019-01477-3>>

White TJ, Bruns TD, Lee S, Taylor J (1990) 38 - Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, In PCR Protocols. (Eds MA Innis, DH Gelfand, JJ Sninsky, TJ White) pp. 315–322. Academic Press: San Diego. <<http://dx.doi.org/10.1016/B978-0-12-372180-8.50042-1>>

Zhou H-M, Liu H-G, Gates GM, Wu F, Dai Y-C, Cooper JA (2022) Phylogeny and diversity of the genus *Pseudohydnum* (*Auriculariales*, *Basidiomycota*). *Journal of Fungi* 8(7): 658. <<https://doi.org/10.3390/jof8070658>>

This paper was typeset using Prince

www.princexml.com